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Abstract

For any triple(Mn, g,∇) consisting of a Riemannian manifold and a metric connection with
skew-symmetric torsion we introduce an elliptic, second-order operatorΩ acting on spinor fields.
In case of a naturally reductive space and its canonical connection, our construction yields the
Casimir operator of the isometry group. Several non-homogeneous geometries (Sasakian, nearly
Kähler, cocalibratedG2-structures) admit unique connections with skew-symmetric torsion. We
study the corresponding Casimir operator and compare its kernel with the space of∇-parallel
spinors.
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1. Introduction

Consider a Riemannian manifold(Mn, g,∇) equipped with a metric connection with
skew-symmetric torsionT , and denote by(D1/3)2 the square of the Dirac operator corre-
sponding to the connection with torsion formT/3. We introduce a second-order differential
operatorΩ that differs from(D1/3)2 by a zero-order term. This parameter shift has been
already used by Bismut in the proof of the local index theorem for Hermitian manifolds.
Later, generalizing the well-known Parthasarathy formula for the square of the Dirac oper-
ator of a symmetric space, Kostant noticed a simple algebraic formula for some element in
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the tensor product of the universal enveloping algebra by the Clifford algebra of a naturally
reductive space (see[17]). The geometric interpretation of Kostant’s “cubic Dirac operator”
as a 1/3-parameter shifted Dirac operator for such a space endowed with its canonical con-
nection as well as the formula for the square of any operatorDs in the family have been
discussed in the paper[1]. Our operatorΩ is constructed in such a way to coincide with the
Casimir operator of the naturally reductive space in the homogeneous situation, hence mo-
tivating its name. The integral formulas for(D1/3)2 are then used in order to study the new
operatorΩ in greater detail. In general, the kernel of the operatorΩ contains all∇-parallel
spinors. If the torsion formT is ∇-parallel, the formula forΩ simplifies to

Ω = (D1/3)2 − 1
16(2 Scalg + ‖T‖2),

and the operatorsΩ and(D1/3)2 commute with the action of the torsion form on spinors.
Triples (Mn, g,∇) occur in the study of non-integrable special Riemannian manifolds
in a natural way. For example, any Sasakian manifold in odd dimensions, any Hermi-
tian manifold with skew-symmetric Nijenhuis tensor in even dimensions, any cocalibrated
G2-manifold in dimension seven and any Spin(7)-manifold in dimension 8 admit a unique
metric connection with skew-symmetric torsion and preserving the additional geometric
structure (see[9,10] and[4] in case of Hermitian manifolds). The torsion forms of these
connections are models for theB-field in the string equations and their parallel spinor fields
are the supersymmetries of the models. From the mathematical point of view, the basic role
of these connections is closely related to the fact that many of the geometric data of the
non-integrable geometric structure can be read of its unique torsion form.

We study the Casimir operator of a Riemannian manifold equipped with a metric con-
nection. In particular, we compare its kernel with the space of∇-parallel or with the space
of Riemannian Killing spinors. The low dimensions are specially interesting. Therefore, we
investigate Sasakian manifolds in dimension 5, nearly Kähler manifolds in dimension 6, and
cocalibratedG2-manifolds in dimension 7 in detail. In case that a non-integrable geometric
structure admits a transitive automorphism group and that the space is naturally reductive,
its unique geometric connection coincides with the canonical connection of the reductive
space. Henceforth, our geometric Casimir operator is the group-theoretical Casimir opera-
tor acting on spinors and we can study some of its properties in a purely geometric way, for
example through vanishing theorems.

2. An overview of Schrödinger–Lichnerowicz type formulas for Dirac operators

Consider a Riemannian spin manifold(Mn, g, T) with a 3-formT . Then we may define
a metric connection with torsionT by the formula

∇XY := ∇g
XY + 1

2T(X, Y,−),

where we denoted by∇g the Levi-Civita connection ofM. The connection∇ can be lifted
to a connection on the spinor bundleS of M, where it takes the expression

∇Xψ := ∇g
Xψ + 1

4(X�T) · ψ.
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We shall writeD for the Dirac operator associated with the connection∇, andDg for
the classical Riemannian Dirac operator, the two being related byD = Dg + (3/4)T .
In this section, we review the known Weitzenböck formulas for the square ofD and its
relatives which will be needed in all subsequent sections. First, let us introduce the first-order
differential operator

Dψ :=
n∑

k=1

(ek�T ) · ∇ekψ = Dgψ + 1

4

n∑
k=1

(ek�T ) · (ek�T ) · ψ,

wheree1, . . . , en denotes an orthonormal basis andDg the part of the operatorD coming
from the Levi-Civita connection. It will be convenient to introduce a 4-form derived from
T ,

σT := 1

2

n∑
k=1

(ek�T) ∧ (ek�T).

By Agricola and Friedrich[2, Proposition 5.1],σT is linked to the square ofT inside the Clif-
ford algebra byT 2 = −2σT +‖T‖2. On spinors, the difference between the endomorphisms
σT and(D−Dg) is given by the formula

n∑
k=1

(ek�T) · (ek�T) = 2σT − 3‖T‖2.

Theorem 2.1(Friedrich and Ivanov[10, Theorems 3.1 and 3.3]). Let (Mn, g,∇) be an
n-dimensional Riemannian manifold with a metric connection∇ of skew-symmetric torsion
T . Then, the square of the Dirac operatorD associated with∇ acts on an arbitrary spinor
fieldψ as:

(1) D2ψ = �T (ψ) + 3
4 dT · ψ − 1

2σT · ψ + 1
2δT · ψ −Dψ + 1

4 Scal· ψ,

where�T is the spinor Laplacian of∇,

�T (ψ) = (∇)∗∇ψ = −
n∑

k=1

∇ek∇ekψ + ∇∇g
ei
ei
ψ,

andScal is the scalar curvature of the connection∇. It is related to the Riemannian
scalar curvatureScalg byScal= Scalg−(3/2)‖T‖2.Furthermore, the anti-commutator
of D andT is

(2) D ◦ T + T ◦ D = dT + δT − 2σT − 2D.

This formula forD2 has the disadvantage of still containing a first-order differential operator.
By shifting the parameter in the torsion of the connection∇, we can state a more useful
Schrödinger–Lichnerowicz type formula. It links the Dirac operatorD1/3 = Dg + T/4 of
the connection with torsionT/3 and the Laplacian of the connection with torsionT . The
remainder is a zero-order operator. Details on this parameter shift and its history are given
in [2].
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Theorem 2.2(Agricola and Friedrich[2, Theorem 5.2]). The spinor Laplacian�T and the
square of the Dirac operatorD1/3 are related by

(D1/3)2 = �T + 1
4 dT + 1

4 Scalg − 1
8‖T‖2.

Integrating the latter formula on a compact manifoldMn, we obtain∫
Mn

‖D1/3ψ‖2 =
∫
Mn

[
‖∇ψ‖2 + 1

4
〈dT · ψ,ψ〉 + 1

4
Scalg‖ψ‖2 − 1

8
‖T‖2‖ψ‖2

]
.

Finally, we state the Kostant–Parthasarathy formula for(D1/3)2 in the homogeneous case,
as it is the main motivation for what follows.

Theorem 2.3(Agricola [1, Theorem 3.3]). Let M = G/H be a naturally reductive ho-
mogeneous space, andg = h + m. Then its canonical connection∇ has skew-symmetric
torsionT(X, Y,Z) = −g([X, Y ]m, Z)(X, Y,Z ∈ m), T is ∇-parallel andD1/3 satisfies the
identity

(D1/3)2 = Ωg + 1
8 Scalg + 1

16‖T‖2,

whereΩg denotes the Casimir operator ofg.

Typically, the canonical connection of a naturally reductive homogeneous spaceM can
be given an alternative geometric characterization—for example, as the unique metric con-
nection with skew-symmetric torsion preserving a givenG-structure (see[1] or [10] for
examples and details). Once this is done,D1/3, Scalg and‖T‖2 are geometrically invariant
objects, whereasΩg still heavily relies on the concrete realization of the homogeneous
spaceM as a quotient. At the same time, the same interestingG-structures exist on many
non-homogeneous manifolds. Hence it was our goal to find a tool similar toΩg which has
more intrinsic geometric meaning and which can be used in both situations just described.

3. The Casimir operator of a triple (Mn, g, ∇)

We consider a Riemannian spin manifold(Mn, g,∇) with a metric connection∇ and
skew-symmetric torsionT . Denote by�T the spinor Laplacian of the connection.

Definition 3.1. TheCasimir operatorof the triple(Mn, g,∇) is the differential operator
acting on spinor fields by

Ω := (D1/3)2 + 1
8(dT − 2σT ) + 1

4δ(T) − 1
8 Scalg − 1

16‖T‖2

= �T + 1
8(3 dT − 2σT + 2δ(T) + Scal).

Remark 3.1. A naturally reductive spaceMn = G/H endowed with its canonical connec-
tion satisfies dT = 2σT andδT = 0, henceΩ = Ωg by Theorem 2.3. For connections with
dT = 2σT andδT = 0, the numerical factors are chosen in such a way to yield an overall
expression proportional to the scalar part of the right-hand side of Eq. (1).
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Example 3.1. For the Levi-Civita connection(T = 0)of an arbitrary Riemannian manifold,
we obtain

Ω = (Dg)2 − 1
8 Scalg = �g + 1

8 Scalg.

The second equality is just the classical Schrödinger–Lichnerowicz formula for the Rieman-
nian Dirac operator, whereas the first one is—in case of a symmetric space—the classical
Parthasarathy formula.

Example 3.2. Consider a three-dimensional manifold of constant scalar curvature, a con-
stanta ∈ R and the 3-formT = 2a dM3. Then

Ω = (Dg)2 − aDg − 1
8 Scalg.

The kernel of the Casimir operator corresponds to eigenvaluesλ ∈ Spec(Dg) of the Rie-
mannian Dirac operator such that

8(λ2 − aλ) − Scalg = 0.

In particular, the kernel ofΩ is in general larger then the space of∇-parallel spinors. Indeed,
such spinors exist only on space forms. More generally, fix a real-valued smooth function
f and consider the 3-formT := f · dM3. If there exists a∇-parallel spinor

∇g
Xψ + (X�T) · ψ = ∇g

Xψ + f · X · ψ = 0,

then, by the theorem of Lichnerowicz (see[18]), f is constant and(M3, g) is a space form.
Let us collect some elementary properties of the Casimir operator of a triple(Mn, g,∇).

Proposition 3.1. The kernel of the Casimir operator contains all∇-parallel spinor.

Proof. By Theorem 2.1, one of the integrability conditions for a∇-parallel spinor fieldψ
is

(3 dT − 2σT + 2δ(T) + Scal) · ψ = 0. �

If the torsion formT is ∇-parallel, the formulas for the Casimir operator simplify. Indeed,
in this case we have (see[10])

dT = 2σT , δ(T) = 0,

and the Ricci tensor Ric of∇ is symmetric. Using the formulas ofSection 2(in particular,
Theorems 2.1 and 2.2), we obtain a simpler expression for the Casimir operator.

Proposition 3.2. The Casimir operator of a triple(Mn, g,∇)with∇T = 0can equivalently
be written as

Ω = (D1/3)2 − 1
16(2 Scalg + ‖T‖2) = �T + 1

16(2 Scalg + ‖T‖2) − 1
4T

2

= �T + 1
8(2 dT + Scal).
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Integrating these formulas, we obtain a vanishing theorem for the kernel of the Casimir
operator.

Proposition 3.3. Let(Mn, g,∇)be a compact triple such that the torsion form is∇-parallel.
If one of the conditions

2 Scalg ≤ −‖T‖2 or 2 Scalg ≥ 4T 2 − ‖T‖2,

holds, the Casimir operator is non-negative inL2(S).

Example 3.3. For a naturally reductive spaceM = G/H , the first condition can never
hold, since a representation theoretic argument[1, Lemma 3.6]shows that 2 Scalg + ‖T‖2

is strictly positive. In concrete examples, the second condition typically singles out the
normal homogeneous metrics among the naturally reductive ones. Notice a small mistake
in Lemma 3.5 of[1]: in general, the fact that the negative definite contribution of the
scalar product comes from an Abelian summand ing is not enough to conclude thatΩg is
non-negative.

Two further consequences ofProposition 3.2are the following proposition and theorem.

Proposition 3.4. If the torsion form is∇-parallel, the Casimir operatorΩ and the square
of the Dirac operator(D1/3)2 commute with the endomorphismT ,

Ω ◦ T = T ◦ Ω, (D1/3)2 ◦ T = T ◦ (D1/3)2.

The endomorphismT acts on the spinor bundle as a symmetric endomorphism withconstant
eigenvalues.

Theorem 3.1. Let (Mn, g,∇) be a compact Riemannian spin manifold equipped with a
metric connection∇ with parallel, skew-symmetric torsion, ∇T = 0. The endomorphism
T and the Riemannian Dirac operatorDg act in the kernel of the Dirac operatorD1/3. In
particular, if, for all µ ∈ Spec(T), the number−µ/4 is not an eigenvalue of the Riemannian
Dirac operator, then the kernel ofD1/3 is trivial.

Proof. On a compact manifold, the kernels ofD1/3 and(D1/3)2 coincide. �

If ψ belongs to the kernel ofD1/3 and is an eigenspinor of the endomorphismT , we have
4 · Dgψ = −µ · ψ, µ ∈ Spec(T). Using the estimate of the eigenvalues of the Riemannian
Dirac operator (see[8]) we obtain an upper bound for the minimum Scalg

min Riemannian
scalar curvature in case that the kernel of the operatorD1/3 is non-trivial.

Proposition 3.5. Let (Mn, g,∇) be a compact Riemannian spin manifold equipped with a
metric connection∇ with parallel, skew-symmetric torsion, ∇T = 0. If the kernel of the
Dirac operatorD1/3 is non-trivial, then the minimum of the Riemannian scalar curvature
is bounded by

max{µ2 : µ ∈ Spec(T)} ≥ 4n

n − 1
Scalgmin.
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Remark 3.2. If (n − 1)µ2 = 4nScalg is in the spectrum ofT and there exists a spinor
fieldψ in the kernel ofD1/3 such thatT ·ψ = µ ·ψ, then we are in the limiting case of the
inequality in[8]. Consequently,Mn is an Einstein manifold of non-negative Riemannian
scalar curvature andψ is a Riemannian Killing spinor,

∇g
Xψ − µ

4n
· X · ψ = 0.

Examples of this type are seven-dimensional 3-Sasakian manifolds. The possible torsion
form has been discussed in[2, Section 8].

4. The Casimir operator of a five-dimensional Sasakian manifold

Let (M5, g, ξ, η, ϕ) be a compact five-dimensional Sasakian spin manifold (with a fixed
spin structure) and denote by∇ its unique connection with skew-symmetric torsion and
preserving the contact structure. We orientM5 by the condition that the differential of the
contact form is given by dη = 2(e1∧e2+e3∧e4), and write hencefortheij ··· for ei∧ej∧· · · .
Then we have (see[10])

∇T = 0, T = η ∧ dη = 2(e12 + e34) ∧ e5, T 2 = 8 − 8e1234

and

Ω = (D1/3)2 − 1
8 Scalg − 1

2 = �T + 1
8 Scalg − 3

2 + 2e1234.

We study the kernel of the Dirac operatorD1/3. The endomorphismT acts in the five-dimen-
sional spin representation with eigenvalues(−4,0,0,4) and, according toTheorem 3.1,
we have to distinguish two cases. IfD1/3ψ = 0 andT ·ψ = 0, the spinor field is harmonic
and the formulas ofProposition 3.2yield in the compact case the condition∫

M5
(2 Scalg + 8)‖ψ‖2 ≤ 0.

Examples of that type are the five-dimensional Heisenberg group with its left invariant
Sasakian structure or certainS1-bundles over a flat torus. On these spaces, there exist
∇-parallel spinorsψ0 satisfying the algebraic equationT ·ψ0 = 0 (see[10,11]). Their scalar
curvature equals Scalg = −4. Let us describe the five-dimensional Heisenberg group. Its
Sasakian structure is given onR

5 with coordinates(x1, x2, y1, y2, z) by the 1-forms

e1 := 1
2 dx1, e2 := 1

2 dy1, e3 := 1
2 dx2, e4 := 1

2 dy2,

e5 = η := 1
2(dz − y1 · dx1 − y2 · dx2).

The space of all∇-parallel spinors satisfyingT · ψ0 = 0 is a two-dimensional subspace
of the kernel of the operatorD1/3. In a left-invariant frame ofM5, spinors are simply
functionsψ : M5 → �5 with values in the five-dimensional spin representation. It turns
out that the spinorsψ0 are constant. Consequently, for any discrete subgroupΓ of the
Heisenberg group, the manifoldM5/Γ equipped with its trivial spin structure is a Sasakian



I. Agricola, T. Friedrich / Journal of Geometry and Physics 50 (2004) 188–204 195

manifold admitting spinors in Ker(D1/3). The second case for spinors in the kernel is given
by D1/3ψ = 0 andT · ψ = ±4ψ. The spinor field is an eigenspinor for the Riemannian
Dirac operator,Dgψ = ∓ψ. The formulas ofPropositions 3.2 and 3.5yield in the compact
case two conditions:∫

M5
(Scalg − 12)‖ψ‖2 ≤ 0 and 5 Scalgmin ≤ 16.

The paper[15] contains a construction of Sasakian manifolds admitting a spinor field of
that algebraic type in the kernel ofD1/3. We describe the construction explicitly. Suppose
that the Riemannian Ricci tensor Ricg of a simply-connected, five-dimensional Sasakian
manifold is given by the formula

Ricg = −2 · g + 6 · η ⊗ η.

Its scalar curvature equals Scalg = −4. In the simply-connected and compact case, they are
total spaces ofS1 principal bundles over four-dimensional Calabi–Yau orbifolds (see[5]).
There exist (see[15, Theorem 6.3]) two spinor fieldsψ1, ψ2 such that

∇g
Xψ1 = −1

2X · ψ1 + 3
2η(X) · ξ · ψ1, T · ψ1 = −4ψ1,

∇g
Xψ2 = 1

2X · ψ2 − 3
2η(X) · ξ · ψ2, T · ψ2 = 4ψ2.

In particular, we obtain

Dgψ1 = ψ1, T · ψ1 = −4ψ1 and Dgψ2 = −ψ2, T · ψ2 = 4ψ2,

and therefore the spinor fieldsψ1 andψ2 belong to the kernel of the operatorD1/3.
Next, we investigate the kernel of the Casimir operator. Under the action of the torsion

form, the spinor bundleS splits into three subbundlesS = S0 ⊕ S4 ⊕ S−4 corresponding
to the eigenvalues ofT . Since∇T = 0, the connection∇ preserves the splitting. The
endomorphisme1234 acts by the formulas

e1234 = 1 on S0, e1234 = −1 on S4 ⊕ S−4.

Consequently, the formula

Ω = �T + 1
8 Scalg − 3

2 + 2e1234

shows that the Casimir operator splits into the sumΩ = Ω0 ⊕Ω4 ⊕Ω−4 of three operators
acting on sections inS0, S4 andS−4. OnS0, we have

Ω0 = �T + 1
8 Scalg + 1

2 = (D1/3)2 − 1
8 Scalg − 1

2.

In particular, the kernel ofΩ0 is trivial if Scalg = −4. The Casimir operator onS4 ⊕ S−4
is given by

Ω±4 = �T + 1
8 Scalg − 7

2 = (D1/3)2 − 1
8 Scalg − 1

2

and a non-trivial kernel can only occur if−4 ≤ Scalg ≤ 28. A spinor fieldψ in the kernel
of the Casimir operatorΩ satisfies the equations

(D1/3)2 · ψ = 1
8(4 + Scalg)ψ, T · ψ = ±4ψ.
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In particular, we obtain∫
M5

〈(Dg ± 1)2ψψ〉 = 1

8

∫
M5

(4 + Scalg)‖ψ‖2,

and the first eigenvalue of the operator(Dg ± 1)2 is bounded by the scalar curvature,

λ1(D
g ± 1)2 ≤ 1

8(4 + Scalgmax).

Let us consider special classes of Sasakian manifolds. A first case is Scalg = −4. Then the
formula for the Casimir operator simplifies,

Ω0 = �T = (D1/3)2, Ω±4 = �T − 4 = (D1/3)2.

If M5 is compact, the kernel of the operatorΩ0 coincides with the space of∇-parallel
spinors in the bundleS0. A spinor fieldψ in the kernel the operatorΩ±4 is an eigenspinor
of the Riemannian Dirac operator,

Dg(ψ) = ∓ψ, T · ψ = ±4ψ.

Compact Sasakian manifolds admitting spinor fields in the kernel ofΩ0 are quotients of the
five-dimensional Heisenberg group (see[11, Theorem 4.1]). Moreover, the five-dimensional
Heisenberg group and its compact quotients admit spinor fields in the kernel ofΩ±4, too.
Indeed, the non-trivial connection forms of the Levi-Civita connection are

ω12 = e5 = ω34, ω15 = e2, ω25 = −e2, ω35 = e4, ω45 = −e2,

and a computation of the Riemannian Dirac operator yields the formula

Dg(ψ) =
5∑

k=1

ek · ek(ψ) on S0, Dg(ψ) =
5∑

k=1

ek · ek(ψ) ∓ ψ on S±4.

Spinors in the kernel ofΩ±4 occur on Sasakianη-Einstein manifolds of type Ricg =
−2 · g + 6 · η ⊗ η, too. This example has been discussed above.

A second case is Scalg = 28. Then

Ω0 = �T + 4 = (D1/3)2 − 4, Ω±4 = �T = (D1/3)2 − 4.

The kernel ofΩ0 is trivial and the kernel ofΩ±4 coincides with the space of∇-parallel
spinors in the bundleS±4. Sasakian manifolds admitting spinor fields of that type have been
described in[10, Theorem 7.3 and Example 7.4].

If −4 < Scalg < 28, the kernel of the operatorΩ0 is trivial and the kernel ofΩ±4 depends
on the geometry of the Sasakian structure. Let us discuss Einstein–Sasakian manifolds.
Their scalar curvature equals Scalg = 20 and the Casimir operators are

Ω0 = �T + 3, Ω±4 = �T − 1 = (D1/3)2 − 3.

If M5 is simply-connected, there exist two Riemannian Killing spinors (see[13,15])

∇g
Xψ1 = 1

2X · ψ1, Dg(ψ1) = −5
2ψ1, T · ψ1 = 4ψ1,

∇g
Xψ2 = −1

2X · ψ2, Dg(ψ2) = 5
2ψ2, T · ψ2 = −4ψ2.



I. Agricola, T. Friedrich / Journal of Geometry and Physics 50 (2004) 188–204 197

We compute the Casimir operator

Ω(ψ1) = −3
4ψ1, Ω(ψ2) = −3

4ψ2.

In particular, the Casimir operator of an Einstein–Sasakian manifold hasnegativeeigenval-
ues. The Riemannian Killing spinors are parallel sections in the bundlesS±4 with respect
to the flat connections∇±

∇+
Xψ := ∇g

Xψ − 1
2X · ψ in S4, ∇−

Xψ := ∇g
Xψ + 1

2X · ψ in S−4.

We compare these connections with our canonical connection∇:

(∇±
X − ∇X) · ψ± = ±1

2ig(X, ξ) · ψ±, ψ± ∈ S±4.

The latter equation means that the bundleS4 ⊕ S−4 equipped with the connection∇ is
equivalent to the two-dimensional trivial bundle with the connection form

A = i

2
η ·

[
−1 0

0 1

]
.

The curvature of∇ on these bundles is given by the formula

R∇ = i

2
dη ·

[
−1 0

0 1

]
= i(e1 ∧ e2 + e3 ∧ e4) ·

[
1 0

0 −1

]
.

Since the divergence div(ξ) = 0 of the Killing vector field vanishes, the Casimir operator
onS4 ⊕ S−4 is the following operator acting on pairs of functions:

Ω4 ⊕ Ω−4 = �T − 1 = � − 3

4
+

[
−i 0

0 i

]
ξ.

Here� means the usual Laplacian ofM5 acting on functions andξ is the differentiation
in direction of the vector fieldξ. In particular, the kernel ofΩ coincides with solutions
f : M5 → C of the equation

�(f) − 3
4f ± iξ(f) = 0.

TheL2-symmetric differential operators� and iξ commute. Therefore, we can diagonalize
them simultaneously. The latter equation is solvable if and only if there exists a common
eigenfunction

�(f ) = µf, iξ(f ) = λf, 4(µ + λ) − 3 = 0.

The Laplacian� is the sum of thenon-negativehorizontal Laplacian and the operator(iξ)2.
Now, the conditions

λ2 ≤ µ, 4(µ + λ) − 3 = 0

restrict the eigenvalue of the Laplacian, 0≤ µ ≤ 3. On the other side, by the Lichnerowicz–
Obata theorem (see[3]) we have 5≤ µ, a contradiction. In particular, we proved the
following theorem.
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Theorem 4.1. The Casimir operator of a compact five-dimensional Sasakian–Einstein
manifold has trivial kernel.

The same argument estimates the eigenvalues of the Casimir operator. It turns out that
the smallest eigenvalues ofΩ is negative and is equal to−3/4. The eigenspinors are the
Riemannian Killing spinors. The next eigenvalue of the Casimir operator is at least

λ2(Ω) ≥ 17
4 −

√
5 ≈ 2.014.

5. An explicit example: the five-dimensional Stiefel manifold

The five-dimensional Stiefel manifold V4,2 = SO(4)/SO(2) admits a homogeneous
Einstein–Sasakian metric. This metric can be constructed via the Kaluza–Klein approach,
observing that V4,2 is a principal SO(2)-bundle over the four-dimensional Einstein–Kähler
manifold G4,2 of all oriented two planes inR4. As a homogeneous space, the geome-
try and the Dirac operator of V4,2 have been described in[8]. We will use these formu-
las in our computation, with a slight change in normalization: we set the scalar curva-
ture of a five-dimensional Einstein–Sasakian manifold equal to 20, whereas the metric
as described in the latter paper has scalar curvature 20/3. The manifold V4,2 can be dis-
cussed as a naturally reductive space by writing it as SO(4) × SO(2)/SO(2) × SO(2),
and its canonical connection does then coincide with the unique metric connection∇ with
skew-symmetric torsion preserving the Sasakian structure as discussed in the previous sec-
tion (see also[1]). In this discussion, we concentrate on its contact structure and show that
many properties can be derived from it alone. In order to fix the notation, letEij be the
standard basis of the Lie algebraso(4). The subalgebraso(2) is generated by the matrix
E34 and

X1 :=
√

3E13, X2 :=
√

3E14, X3 :=
√

3E23,

X4 :=
√

3E24, ξ = X5 := 3
2E12

constitute an orthonormal basis defining the metric of V4,2. The formula for the Riemannian
Dirac operator has been computed in[8]

Dg(ψ) =
√

3
5∑

i=1

Xi · Xi(ψ) + S(ψ), S := 5i

2




0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0


 .

Using the commutator relations for [Xi,Xj] as well as the matrix of the endomorphism
T = η ∧ dη, we compute the square of the operatorD1/3,

(D1/3)2(ψ) = −3
5∑

i=1

X2
i (ψ) + M1 · ψ + M2 · E34(ψ) + M3 · X5(ψ).
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Here the matricesM1,M2 andM3 are given by

M1 := 9

4




0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1


 , M2 := 6i




1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0


 ,

M3 :=
√

3




0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0


 .

According to the lift of the isotropy representation into the spin module (see[8]), a spinor
field is a tripleψ = (ψ+, ψ−, ψ∗) of mapsψ± : SO(4) → C andψ∗ : SO(4) → C

2

such thatE34(ψ±) = ±iψ± andE34(ψ∗) = 0. The mapψ∗ is a section in the bundle
S4 ⊕ S−4 and(ψ+, ψ−) are sections inS0. Specially over V4,2 the latter bundle splits into
the sum of two line bundles. The Casimir operatorΩ = Ω0 ⊕ Ω4 ⊕ Ω−4 is equivalent to
the operators

Ω0 = −3
5∑

α=1

X2
α + 3, Ω4 ⊕ Ω−4 = −3

5∑
α=1

X2
α − 3

4
±

√
3i · X5

acting on functionsf : SO(4) → C satisfying the quasi-periodicity conditionsE34(f) =
±if andE34(f) = 0, respectively.

6. The Casimir operator of six-dimensional nearly Kähler manifolds

Let (M6, g,J ) be a six-dimensional nearly Kähler manifold. ThenM6 is an Einstein
manifold of positive scalar curvature,

Ricg = 5
2ag, Scalg = 15a > 0.

The Nijenhuis tensorN does not vanish. There exists a unique connection∇ with skew-
symmetric torsionT . This connection is Gray’s characteristic connection (see[16]) and its
geometric data are given by

∇T = 0, 4T = N, Ric = 2ag.

Moreover, we have

2σT = dT = a(ω ∧ ω) = 2a(e1234+ e1256+ e3456), ‖T‖2 = 2a,

whereω denotes the fundamental form of the nearly Kähler structure. A general reference
for all these formulas is the paper[10]. We compute the symmetric endomorphism dT in
the spinor bundle

2 dT + Scal= 16a diag(0,0,1,1,1,1,1,1).
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Consequently, the Casimir operator

Ω = �T + 1
8(2 dT + Scal) = (D1/3)2 − 2a

is non-negative. Its kernel coincides with the two-dimensional space of all∇-parallel
spinors. These spinor fields are the Riemannian Killing spinors onM6. The Dirac operator
(D1/3)2 is bounded from below by

(D1/3)2 ≥ 2
15 Scalg > 0.

7. The Casimir operator of seven-dimensionalG2-manifolds

Let (M7, g, ω3) be a seven-dimensional cocalibratedG2-manifold (d ∗ω3 = 0) such that
the scalar product(dω3, ∗ω3) is constant. There exists a unique connection∇ preserving
theG2-structure with skew-symmetric torsion

T = − ∗ dω3 + 1
6(dω

3, ∗ω3) · ω3, δ(T) = 0.

The Riemannian scalar curvature is given by the formula

Scalg = 1
18(dω

3, ∗ω3)2 − 1
2‖T‖2 = 2(T, ω3)2 − 1

2‖T‖2.

Moreover, there exists a parallel spinor fieldψ0 such that

∇ψ0 = 0, T · ψ0 = −1
6(dω

3, ∗ω3) · ψ0.

A general reference for these facts are the papers[10,12]. The Casimir operator is given by
the formula

Ω = (D1/3)2 − 1
4(T, ω

3)2 + 1
8(dT − 2σT )

= �T + 1
4(T, ω

3)2 + 1
8(3 dT − 2σT − 2‖T‖2).

There are two special types of cocalibratedG2-structures. Anearly parallelG2-manifold
is characterized by the equation dω3 = −a(∗ω3). The paper[14] contains examples of
compact nearly parallelG2-manifolds and their relation to Riemannian Killing spinors (see
[6], too). The torsion form as well as the Riemannian Ricci tensor are given by the formulas

T = −1
6aω

3, Ricg = 3
8a

2 · g, Scalg = 21
8 a2, ‖T‖2 = 7

36a
2.

The torsion form of a nearly parallelG2-manifold is∇-parallel (see[10, Corollary 4.9])
and dT = 2σT . The Casimir operator is given by

Ω = (D1/3)2 − 49
144a

2.

The∇-parallel spinorψ0 is the Riemannian Killing spinor and satisfies the equations (see
[10])

Dgψ0 = −7
8aψ0, T · ψ0 = 7

6aψ0.
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In particular,ψ0 belongs to the kernel of the Casimir operator. Consider now an arbitrary
spinor fieldψ in its kernel. Since the 3-formω3 acts in the spinor bundle with two eigenvalues
−7 and+1, there are two possibilities. If

Ω(ψ) = 0, T · ψ = 7
6aψ,

we obtain in the compact case the equation

49

144
a2

∫
M7

‖ψ‖2 =
∫
M7

∥∥∥∥
(
Dg + 7

24
a

)
ψ

∥∥∥∥
2

.

Consequently, there exists an eigenvalueλ ∈ Spec(Dg) of the Riemannian Dirac operator
such that

(λ + 7
24a)

2 ≤ 49
144a

2, 7
8a ≤ |λ|.

The latter conditions imply that

λ = −7
8a

and we are in the limiting case of the well-known estimate for the eigenvalues of the
Riemannian Dirac operator (see[8]). The spinor fieldψ is a Riemannian Killing spinor,
i.e.,ψ is ∇-parallel. In a similar way, we discuss the second possibility

Ω(ψ) = 0, T · ψ = −1
6aψ.

Then we obtain the inequalities

(λ − 1
24a)

2 ≤ 49
144a

2, 7
8a ≤ |λ|,

and a solutionλ does not exist. Let us summarize the following result.

Theorem 7.1. Let (M7, g, ω3) be a compact, nearly parallelG2-manifold(dω3 = −a ·
(∗ω3)) and denote by∇ its unique connection with skew-symmetric torsion. The kernel of
the Casimir operator of the triple(M7, g,∇) coincides with the space of∇-parallel spinors,

Ker(Ω) = {ψ : ∇ψ = 0, T · ψ = 7
6a · ψ} = Ker(∇).

A cocalibratedG2-structure of typeW3 in the Fernandez/Gray classification is characterized
by the equations d∗ω3 = 0 and(dω3, ∗ω3) = 0 (see[7,9]). The geometric data are ([10,12])

T = − ∗ dω3, Scalg = −1
2‖T‖2, ∇ψ0 = 0, T · ψ0 = 0.

In contrast to the nearly parallel case, cocalibratedG2-manifolds of typeW3 do not satisfy
the condition dT = 2σT . The Casimir operator is given by the formula

Ω = (D1/3)2 + 1
8(dT − 2σT ) = �T + 1

8(3 dT − 2σT − 2‖T‖2).

Examples ofG2-structures of typeW3 on nilpotent Lie groups are discussed in the paper
[10], on the Aloff–Wallach spaceN(1,1) in [2]. We recall these examples and compute the
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relevant endomorphisms; they show that no general pattern is to be expected for this class
of manifolds.

Example 7.1. There exists aG2-structure of typeW3 on the product ofR1 by the Heisenberg
group. In this case, we have‖T‖2 = 4 and

3 dT − 2σT = diag(8,0,8,−16,8,−16,8,0),

dT − 2σT = diag(0,8,0,−8,0,−8,0,8).

A second example on the product ofR
1 by a three-dimensional complex, solvable Lie group

has been described in[10], too. In both examples, 3 dT − 2σT − 2‖T‖2 is a non-positive
endomorphism acting on spinors. Consequently, the Casimir operator is dominated by the
spinorial Laplacian,∫

M7
〈Ω(ψ),ψ〉 ≤

∫
M7

〈�T (ψ),ψ〉.

Example 7.2. In [2], we constructed on the Aloff–Wallach spaceN(1,1) = SU(3)/S1 a
family of metrics depending on a parameter 0< y < 1 as well asG2-structures of type
W3 (see[2, Proposition 7.8]). In the notation of that paper, the spinorψ5 is the∇-parallel
spinor and algebraically the torsion form is given by 4· T5 with

T5 = −y + 2

4
[X135 + X146 + X245 − X236] + 3y

y − 1
X127

+ 2 + 2y − y2

2y − 2
[X347 − X567].

Using the structure equations of the underlying geometry, we compute the exterior deriva-
tive,

dT5 = (2 + 4y)[X2357+ X2467− X1457+ X1367] + 3y(−2 − 2y + y3)

(y − 1)2
X3456

+ 10+ 9y + 12y2 + 5y3

(y − 1)2
[X1234− X1256].

Inserting the matrices of the seven-dimensional spin representation, we compute the en-
domorphism 3(4 dT5) + (4T5)

2 − 3‖4T5‖2. It turns out that this endomorphism has the
eigenvalues diag(a, a, b, b,0, c, a, a), wherec := 64(7 + 10y + y2) > 0 and

a := −72(2 + y + y2 − y3 + y4)

(y − 1)2
< 0,

b := 16(20+ 7y + 33y2 + 13y3 − y4)

(y − 1)2
> 0.

The endomorphism 4 dT5 − 2σ4T5 = 4 dT5 + (4T5)
2 − ‖4T5‖2 has the eigenvalues

diag(a∗, a∗, b∗, b∗,0, c∗, a∗, a∗), wherec∗ := 64(5 + 6y + y2) > 0 and



I. Agricola, T. Friedrich / Journal of Geometry and Physics 50 (2004) 188–204 203

a∗ := 24(−2 + y)(1 + y)2

1 − y
< 0, b∗ := 16(4 − 7y − 10y2 + y3)

y − 1
.

Hence,Ω does not compare in any way to(D1/3)2 or�T ; in particular, no statement about
its kernel or positivity properties is possible.

Let us finally considerarbitrary cocalibratedG2-structures. The following example on
N(1,1) is described in the paper[2], including the computation of the canonical connec-
tion and its geometric data. Surprisingly, its behavior is almost the opposite to that of
Example 7.1.

Example 7.3. In [2, Proposition 7.5], we constructed onN(1,1)a cocalibratedG2-structure
with some special symmetry property. Its torsion form is given by 4· T with

T = 1
6

√
3[X135 + X146 − X245 + X236].

Using the structure equations of the underlying geometry we compute the exterior derivative,

dT = −X2357− X2467− X1457+ X1367,

and finally the endomorphism

1
4(4T, ω

3)2 + 1
8(12 dT − 2σ4T − 2‖4T‖2) = diag(10

3 , 10
3 ,0,12, 10

3 , 10
3 , 10

3 , 10
3 ).

In particular, the Casimir operator of thisG2-structure is non-negative,∫
N(1,1)

〈Ω(ψ),ψ〉 ≥
∫
N(1,1)

〈�T (ψ),ψ〉 ≥ 0,

and its kernel coincides with the space of∇-parallel spinors.
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